Simulating a City-Scale Community Network:
From Models to First Improvements for Freifunk

Tobias Hardes, Falko Dressler and Christoph Sommer
Distributed Embedded Systems Group, Dept. of Computer Science, University of Paderborn, Germany
{tobias.hardes,dressler, sommer}@ccs-labs.org

Abstract—Community networks establish a wireless mesh
network among citizens, providing a network that is independent,
free, and (in some cases) available where regular Internet access
is not. Following initial disappointments with their performance
and availability, they are currently experiencing a second spring.
Many of these networks are growing fast, but with little planning
and limited oversight. Problems mostly manifest as limited
scalability of the network — as has happened in the Freifunk
mesh network operating in the city of Paderborn (approx. 800
nodes running the BATMAN IV protocol with control messages
alone accounting for 25 GByte per month and node). In this
work, we detail how we modeled this real-life network in a
computer simulation as a way of allowing rapid (and worry
free) experimentation with maximum insight. We describe how
we parameterized and validated this model using gathered
measurements. Based on the model, we were able to investigate
alternative structures and parameterizations to improve the
performance. The predicted performance gains map well to those
measured after the proposed changes were deployed city-wide.

I. INTRODUCTION

In recent years a sharp rise of wireless community networks
could be noticed [1]. Such networks provide a wireless mesh
network that is established and operated by private persons.
The goals of such projects are diverse, from operating an
independent network, to one that is free [2], to one that is
available where regular Internet access is not, to economic
incentives [3]. As a consequence of their goals and operation,
the mesh networks are frequently managed in a decentralized
way, with limited planning and little oversight. This, coupled
with fast and unplanned growth, repeatedly leads to scalability
problems. Addressing them in a structured way requires either
experimentation or simulation.

Experimentation would allow quick and direct feedback
on the suitability of extensions — and indeed a multitude of
small to medium scale experiments in testbeds can be found
in the literature [4]. However, broad parameter studies or
deeper insights into network behavior cannot be afforded by
experiments. At the same time, any experimentation in a large
scale real-world deployment would require a coordinated effort
among all participants while potentially putting the integrity
of the network at risk.

Simulation, on the other hand, would allow maximum insight
into how the network behaves and allow for quick, worry free
parameter studies. Yet, simulation requires a holistic simulation
model that captures the characteristics of such a complex
network at scale.

In this paper, we focus on the Freifunk community network
initiative, which is composed of a few hundred local commu-
nities, each serving from few dozens to thousands of nodes. In
particular, we concentrate on the Freifunk community network
composed of approximately 800 routers (nodes) in the city
of Paderborn. This community network, like most Freifunk
networks, employs the Batman [5] protocol (specifically,
BATMAN IV) to operate its mesh network and allows anyone to
join as a user, simply by connecting their laptop to a Freifunk
node via WiFi. Like many, it suffered from scalability problems.

We tackle the investigation of these problems by providing a
first city-scale simulation model of a BATMAN IV community
network. To simulate the network, we first implemented a
computer simulation model of BATMAN IV for the OMNeT++
discrete event simulation engine. We then gathered measure-
ments in the real network to parameterize the model and
validated its agreement with measurement data based on traces.
We make all simulation models (and their parameterization to
resemble the Freifunk network of Paderborn) publicly available
as Open Source' to serve as a basis for future research on
community networks.

As a case study, we investigate possible adjustments of
protocol parameters to improve the performance of the Freifunk
network. Our primary objective was to reduce the load caused
by the transmission of control messages: control messages
alone were accounting for 25 GByte per month and node.

One approach could be simply to increase the interval to send
control messages. This would immediately reduce the load,
but it would increase the time until a new mesh or non-mesh
participant gets announced in the network as well. There are
some mechanisms to alleviate those effects like the SpeedyJoin
approach, which enables nodes to temporary add routes for
unknown non-mesh participants. Nevertheless, the latency for
new mesh participants would be increased.

Therefore, we opted for a different solution, reducing the
base load without negatively impacting several metrics we
deem important for smooth operation of the network. We
conclude this paper with a report on this candidate improvement
that we examined in the simulation, which led to substantial
performance gains. This improvement has been deployed city-
wide in the real world deployment as well. We were able to
demonstrate that the predicted performance gains map well to
those measured in the real deployment.

Uhttp://www.ccs-1abs.org/software/ffpb/

Our main contributions can be summarized as follows:

o We created a first computer simulation model of a city-
scale community network based on BATMAN IV. Our
model is based on the Freifunk network operating in
Paderborn.

o We validated the model based on measurements, finding
good agreement between metrics collected in simulation
and the real network.

« We make the model publicly available as a basis for future
research on city-scale community networks.

o We demonstrate that our model allows to extrapolate the
impact of improvements from simulation to the real world.

Our work is structured as follows. In Section II we start
with an overview of BATMAN IV, followed by related work
and previous investigations in this area. Section III presents
the modelling procedure. Here, the focus is on techniques on
how to gather data from an existing network in order to use
this information to automatically generate all configuration
files for the simulation. Section IV illustrates the validation
of the model based on metrics and measurements from real
nodes in the Freifunk network. We focus on one metric and
describe common problems and limitations. Section V shows
the implementation of one improvement. This improvement
has been implemented in the simulation in order to analyze the
impact for the real network. Later on, this improvement has
been implemented in the real network. We demonstrate that
the model gives a very useful representation of the real world
scenario. Section VI summarizes the results and concludes the
paper with proposals for future work.

II. RELATED WORK

A wide variety of protocols have been proposed to establish
wireless mesh networks in the literature. Out of these, only
few have been deployed in city-scale mesh networks, first and
foremost among them modern variants of the Optimized Link
State Routing (OLSR) [6] protocol. The Freifunk initiative has
instead settled on variants of the Batman [5] protocol, which
is a more community driven effort to mesh routing in typical
scenarios of community networks. Most Freifunk networks
today are relying on the BATMAN IV protocol version.

Other than comparable work, the BATMAN IV protocol
operates on top of OSI Layer 2 [7], [8], transporting both
all control messages and all data traffic using raw Ethernet
frames. This way, BATMAN IV makes mesh routing transparent
to any application run by the user (that is, all nodes appear
to be connected via a big network switch). The goal of this
is to allow any protocol stack (e.g., IPv4 or IPv6) as well
as applications needing broadcast/multicast functionality (e.g.,
mDNS service discovery) to be used unmodified.

To maintain the mesh network, a node running BATMAN IV
periodically broadcasts control messages, called Originator
Messages (OGMs). OGMs are used to announce nodes in the
network and to establish multi-hop routes. The goal of this
routes is for any node to be able to reach any mesh or non-
mesh destination in the network. Furthermore, OGMs are used
to announce new non-mesh participants like user devices (i.e.,

unmodified smartphones or laptops connected via WiFi to a
mesh node) and to measure the link quality to direct neighbors.
Neighbors which are receiving the OGMs are rebroadcasting
them according to specific rules in order to transmit them to
all participants in the network.

Most of publications associated with Batman are bachelor
and master theses [7]-[12]. However, there is no documentation
of the BATMAN IV algorithm except a public wiki,” and there
is no dedicated investigation of BATMAN IV at city-scale in
terms of correctness, performance, or reliability. The wiki
gives a rough overview about the basic concepts, configuration
examples and several tutorials. Consequently a lot of scientific
publications simply reference the wiki to argue about properties
of algorithms.

There are a few publications that examine BATMAN III and
other protocols by using network simulations. One of these is
the work of Bowitz [9], which presents an implementation of
a first version of BATMAN III in ns-3. Here the author aimed
to extend BATMAN III in order to use X.509 certificates. The
simulation model has been verified by using debug information
that were gathered from a small real world network. However,
there is no additional information about the concrete validation
and about effects in the real world.

Further publications compare BATMAN III and BATMAN IV
with other mesh routing protocols from layer 2 and layer 3.
Some analyze BATMAN III in small [13] or in synthetic
scenarios, but there is no publication yet about a mesh network
in a complete city.

Many, such as Barolli et al. [14], compare OLSR and
BATMAN III. As a further example, Kulla et al. [15] investigate
the behavior of OLSR and BATMAN III in a stairwell spanning
five floors. Here, the throughput, delay, and packet loss are
used as metrics. The authors analyze different scenarios like
with only stationary nodes or when some nodes are moving
in the network. Yet, the results are highly dependent on the
environment and the author does not provide any information
about the concrete scenario. Further, the experiments are
performed with only five nodes.

Similarly, Abolhasan et al. [16] compare the performance
of three mesh routing protocols, OLSR, Batman, and Babel,
in terms of bandwidth, packet delivery ratio, delay, and route
convergence latency. Experiments were performed with eight
mesh nodes deployed in an office environment.

It can be observed that most of the analyzed studies achieve
slightly different results in their comparison of Batman with
other protocols. This is a common consequence of different
environments and uncontrolled experimental conditions like
interference on the wireless channel or the environment. As
none of the publications give a deeper insight to this, it is
difficult to draw a conclusion to this.

In summary, to be best of our knowledge our investigation
is the first publication on Freifunk and BATMAN IV that uses
a model of a network from real world in a simulation with a
configurable and controlled environment.

Zhttps://www.open-mesh.org/projects/batman-adv/wiki/

Gateway

Gateway

Figure 1. Architecture of the Freifunk Paderborn network: The core network is
operated by mesh routers running BATMAN IV; users connect to these. Mesh
routers can optionally connect to Internet services via a tunnel established
through gateways. Two gateway connections were used to create redundancy.

III. MODELLING THE NETWORK

Figure 1 gives an overview of the network topology of
the Freifunk network in Paderborn. Nodes are meshed via
both wireless links and via (optional) connections to gateway
nodes, tunneled over a standard Internet connection. Both are
using BATMAN IV for routing. Aside from participating in
the routing, the gateway nodes also provide connectivity to
Internet services. For redundancy, each tunneled connection to
a gateway is supplemented with a second fall-back connection.
Users (i.e., their end devices) connect to mesh nodes to use
services in the Freifunk network or the Internet. For this, mesh
nodes operate as a standard WiFi access point.

Our first step in modeling the Freifunk network of Paderborn
was to measure all needed input data. A Freifunk network is an
open platform, which is usually documented by using various
statistics in order to measure the use of the complete network.
As, today, BATMAN IV is usually used in Freifunk, it is possible
to collect arbitrary information of the network by using the
Alfred® service. The daemon is used in Paderborn to share
information about the network topology and node properties.
We filtered and aggregated this information in order to derive
data for our use case. In our case, several information elements
have been used in order to build the model.

On a macroscopic scale, our model encompasses 4 gate-
ways, 775 mesh nodes, 1151 users (a middle ground of the
oscillating user count between 500 and 1500, depending on
the time of day and day of week). For more detailed aspects of
the model, we first needed to know which node is connected
to which node via the wireless channel. This is important for
the forwarding of OGMs as nodes without a tunnel connection
need to use others as next hop to reach the remainder of the
network. Complementary, we need to know all nodes which
are connected to a gateway node by using a tunnel as well.
To place nodes next to each other like they are placed in the
real world, we are also interested in the physical location of
nodes. Last but not least, we need to know about the amount
of non-mesh participants (i.e., users), which are connected to a

3https://www.open-mesh.org/projects/alfred/wiki/

400 7
300 —
g
2200 —
o %W-m_.
0 — \ \ \ \
0 10 20 30 40

users connected

Figure 2. Number of users connected per mesh node in the simulation model.

given node. This is important for our metrics we use to validate
the model. As the Alfred information is always highly up to
date, we can use it to continuously poll a representation of the
system at subsequent moments. This allows us to use historical
data to check the model validity. To gather data over a period
of time, data of mesh nodes (cleaned of personally identifiable
information) has been captured and stored in the network.

Figure 2 illustrates the results of investigating the distribution
of the number of connected users (i.e., clients) per mesh node
in the form of a histogram. Its distribution closely mirrors
that of other community networks as reported by Maccari
and Lo Cigno [1]. While the number of connected clients is
important for the model, the clients properties itself are not
required, as we will show later.

All nodes are registered on the gateways with their MAC
addresses in order to establish the tunnel. By using the MAC of
each individual node, it is possible to extract and filter data for
each node of the network. Here, the geographic locations and
known mesh neighbors are of most interest in order to have a
simulation model that is as close to the real network as possible.
If a new node gets deployed in the real world, the owner is able
to annotate metadata with the node position in the form of GPS
coordinates. All known GPS positions of available nodes are
used for the simulation model. One reason for this is that we
want to closely model not just the backend, but also the wireless
channel in the network, so physical topology influences network
topology: WiFi mesh connections can only be established in
the model if two nodes are in range of each other. This plays
a major role for any node that is not directly connected to
the gateway infrastructure by using tunnel connections, but
only by using the WiFi mesh to other nodes. There is also a
higher network load on the wireless channel if more nodes are
in physical proximity. Having a higher network load leads to
more collisions on the channel and the distribution of OGMs
from mesh nodes becomes harder.

However, because of privacy concerns, the GPS position is
optional information. Furthermore, the coordinates are static
values in the node’s configuration file and not automatically
updated by some GPS sensor or by IP location. So there is a
chance that a node’s GPS position is not available, inaccurate,
or simply completely wrong. This would lead to an error in
the model. To deal with the absence or inaccuracy of GPS

Figure 3. Small section of the Freifunk Paderborn wireless network simulation
model visualized as a graph. Mesh links (long lines) connect mesh nodes
(circles), which are surrounded by connected users (dots).

information, a second parameter is taken into account. The
Alfred record contains information about the direct neighbors
(one-hop neighbors) of a node. Those neighbors can be both
mesh and non-mesh neighbors. As all nodes are well known,
all non-mesh neighbors can be removed from the list and the
result is a list of mesh neighbors for a given node. In the
model, those nodes can be placed next to each other, thus
being able to communicate. While, in reality, there are also
special devices with directed antennas that cannot be mapped
using this procedure, in Paderborn, the number of such devices
is negligible. It further needs to be noted that this procedure
also does not ensure a 100 % mapping to geographic location:

there are also nodes without any neighbors or a GPS location.

It still accurately maps the network topology, which is what
we are concerned with in our study. Figure 3 illustrates the
resulting topology of this process.

The gateway nodes are also listed as direct neighbors. Using

this information, the direct tunnel connections to gateway nodes
can be easily modelled in the simulation. All gateway nodes

themselves are connected to each other in a full mesh topology.

There are eight different gateways in Paderborn with different
hardware resources. As VPN connections require a relatively
high amount of CPU power, each gateway node is able to
handle a different amount of nodes. With this, there is an

invariant router distribution across all gateways in the network.

According to the historical Alfred data, the rough number of
nodes for each of the gateways remains the same over time.
Gateway connections are thus non time variant in our model.

As an execution environment for the Freifunk network model
we selected OMNeT++ [17], a module-based discrete event
network simulation engine. It supports hierarchical modules
which makes the development of models of computer networks
straightforward: A network contains devices and each device
contains multiple layers, each represented by one module.
Furthermore, the simulation environment provides a graphical

editor, which allows us the usage of animations and a visual
representation of the network in order to validate the model in
smaller dimensions [18]. It also ships with a large collection of
simulation modules aimed at modelling computer networks, the
INET Framework. This library provides different predefined
device models for wireless and wired communication and also
implementations of several standard Internet protocols like TCP,
UDP, or IP. We use components like the StandardHost and the
WirelessHost and adjusted those implementations in order to
model real router and gateway nodes for the simulation. We
also use available protocol components like DHCP or DNS.
Furthermore, we are able to rely on its movement models of
network participants.

While the INET Framework provides an implementation
of BATMAN III, it does not provide one of our protocols
under study, BATMAN IV. Therefore, we had to implement the
BATMAN IV algorithm as well. Here, the announcement of
the nodes is of most interest. Therefore, the complete OGM
handling and gateway announcement needed to be modeled.
We base this model on the publicly available source code* of
BATMAN IV. Next, the announcement of new non-mesh clients
is important in order to see whether any adjustment of the
OGM processing leads to a negative impact on the time until a
new client is known at each node in the network. Other parts
of the algorithm are skipped as those are not used in Paderborn
or as they do not have an impact on the OGM processing.

To set up simulations, we wrote a small script to transform
all topology and trace data into OMNeT++ configuration files.
Client devices are joining the simulation based on the historical
measurements from the real network. In the beginning of the
simulation, every node is configured to boot with a random
delay. This avoids artificially synchronized timers, which in turn
would lead to artificially increased collisions on the wireless
channel. A central module collects and stores statistics.

On a regular desktop PC (an Intel i7-2600 running at
3.4 GHz), the completed simulation model executes at 1/8th
speed, consuming approximately 2 GB of memory.

IV. MODEL VALIDATION

As a first step towards validating our model of a city-scale
Freifunk network, we considered which metrics to judge the
model by. We base our decision on the metrics chosen in the
cited related work on mesh routing as well as general work
on simulation [19] and on multi-hop wireless networks [20].

Following this, we picked the following four metrics:

e Delay for node announcement: Delay until a new node is
known by all other nodes in the network.

o Delay for client announcement: Likewise, but for new
clients.

o Packet aggregation performance: Number of OGMs that
are aggregated into one packet.

« Routing overhead: The total number of routing packets
transmitted during the simulation.

“https://git.open-mesh.org/batman-adv.git/, €0172510

The measurement of these metrics in the real world is
not trivial. The number of transmitted OGMs and data for
the packet aggregation is not part of the Alfred data and
this information is not available in public, as it is not of
interest in general. The measurement can still be done with
network protocol analyzers such as Wireshark® and tcpdump®.
However, the measurement has to take place on a real device,
operating in the Freifunk network. The router software is
an OpenWrt operating system that is extended with special
Freifunk properties and therefore it is possible to install
additional packages like tcpdump. Unfortunately, most of the
devices have too little storage to install tcpdump so that this
is only possible on more powerful devices. To install tcpdump
and to perform the measurements, root access on the device is
required. The login by using a password is disabled by default
due to security reasons, but a device can be accessed by using
an SSH connection with a public key authentication. However,
to use the SSH login, the public key must be added to the
router manually and as all devices are owned by individuals, it
is impossible to access them by using this procedure. However,
there is a rather small subset of three routers where access is
possible.

Like the Alfred data, the number of OGMs per node might
also be affected by different factors. Therefore, we collected
those measurements at different daytimes and different days of
the week. As we have detailed historical data of the network
from the Alfred daemon, we use the historical data validation
in order to measure and validate the routing overhead. This
can be measured with tcpdump directly on the nodes.

To measure the metrics in simulation, we instrumented the
discussed simulation model, augmented by the ability to collect
a variety of metrics. As the simulation contains stochastic
elements, we repeat each experiment 50 times to derive
meaningful statistics. Before we can start the measurement of
the required metrics, the network needs to be fully established
in the simulation. This means that every node is known to all
other nodes in the network and a complete routing table is
established in every node. To achieve this, a warm-up time is
used during which no metrics are recorded.

The rationale behind measuring delays as one of our metrics
is straightforward: If the handling of OGMs is changed, the
time until a new node gets announced in the network might be
affected. This would be a critical situation, as routing is not
possible during this time. Because of this problem, the time
until a new node gets announced should approximately be the
same as in the real network. The same problem appears when
a new non-mesh client gets announced, as this is also done by
using the OGM mechanism. Those delays are not measured
in the real world at the moment and therefore we do not have
any data for this validation. We therefore instead compared
delay measurements with theoretical calculations and found
good agreement.

Shttp://www.wireshark.org/
Shttp://www.tcpdump.org/

800 T
_T
g 600 —
8 400
2
o,
#0200 —
0 - -
Real world Simulation
(a) sent
5000 —
e
(5]
.2 4000 —
§ 1
= 3000 —
15}
é 2000 —
a,
1000 —
0 - -
Real world Simulation

(b) received

Figure 4. Sent/Received OGMs in the real world and in the simulation as a
bar plot.

The other metrics are compared based on real world
measurements.

The rationale behind measuring packet aggregation per-
formance is straightforward as well: BATMAN IV is able
to aggregate several OGMs. The goal of this mechanism is
to reduce the control message overhead by sending one big
packet instead of several small ones. Thus, packet aggregation
performance is of prime interest. Interactions between the
protocol layers can cause more or fewer OGMs to be eligible
for aggregation into a single packet sent to other mesh nodes.
We found that, typically, only a single OGM is sent per packet,
but for approximately 25 % of packets up to 19 OGMs could
be aggregated into a single packet in both the simulation and in
the real world. This is indicative of a very good match between
simulation model and real world on many levels.

The last metric we consider, and the most interesting one, is
the routing overhead. For this, both sent and received packets
are counted separately. On a high level, reducing the number
of transmitted OGMs affects a lot of features of BATMAN IV.
Based on the considerations of Law [19] we use the graphical
approach in order to compare the model with the real system
because of the rather small sample size.

The sent OGM count is shown in Figure 4a. The plot
compares the simulation results with the data gathered from
three nodes in the real world. We display the median packet
count as well as the span of measurements (ignoring the top
and bottom 1 %o, which we treat as outliers). Here, the overall
number of packets is slightly below the data from the real

world, but in light of the overall spread of data we deem it an
acceptable fit. The received OGM count is shown in Figure 4b.
As can be seen, received packet counts (which we focus on in
the following) agree even better between real measurements
and simulations: The spans are largely overlapping.

V. NETWORK IMPROVEMENTS AND VALIDATION

A node needs only one connection to a gateway node in
order to gather knowledge about all nodes and non-mesh
clients in the network. However, to increase resilience, the
Paderborn Freifunk network was configured to always establish
a connection to a second gateway as well. Those connections
are chosen by the BATMAN IV protocol and by the firmware
on the router. The rationale is to allow nodes to quickly switch
to the second connection if the primary becomes unusable.
A gateway could become unavailable in case of a reboot or
simply in case of a critical error.

The downside is that, in this network topology, each node
receives almost every OGM twice. This is because of the
broadcast mechanism. Even though a node uses only one
tunnel connection to send OGMs, due to the full mesh between
all gateways, the second gateway broadcasts each received
packet soon after the first gateway broadcasted the one it
received. Because of the OGM processing of BATMAN IV, the
OGM is identified as a duplicate and gets immediately dropped.
Therefore, the second transmission is useless anyway in most
cases.

A potential improvement is thus to remove the second
tunnel in order to save almost 50 % of the OGM transmission.
Unfortunately, this also removes the redundancy; consequently,
the downtime of a node in case of a gateway failure is expected
to be higher — potentially leading to ripple effects in the network.
This could make the complete network unusable.

This risk is compounded by a potential real world experiment
taking a substantial amount of time: To test this change in the
network, firmware for all employed types of routers needs to be
changed and tested. Afterwards, the new firmware needs to be
deployed on all nodes in the network. The Freifunk network of
Paderborn uses an automatic procedure to update all nodes in
the network, so this would not require a high effort. However,
the deployment to all nodes takes up to 24 hours. When all
nodes are running with the new network, the effect needs to
be analyzed and monitored which also takes some time. Only
then could (potentially catastrophic) changes be rolled back
and network functionality restored.

Therefore, we first implemented this proposed change in
the simulation model in order to analyze the effects on the
real network by using the model. Based on the results in
Section III, we showed that our simulation model seems to be
a good representation of the real network and results from the
model should be representative for the real network. We thus
first run the simulation again and analyzed the results in the
same way as with the initial model validation in Section III.

As a first observation, the amount of used gateways does not
affect the networks performance. The throughput of unicast
packets remains unchanged. Based on our analysis, all other

800
" & I
- 1

g 600 —
8 400
2
=%
#0200 —

0 - -

Real world Simulation
(a) sent
2500 ——

B 2000 I
2 1
[}
§ 1500 —
2 1000
g
#+ 500 —

0 - -

Real world Simulation

(b) received

Figure 5. Sent/Received OGMs by using one tunnel connection instead of
two as a bar plot.

metrics are also not influenced in the simulation model. This
was to be expected, as each node drops the OGM received
from the second tunnel connection immediately. This confirms
that, even in the original network, only the first OGM was
used for the client and node announcement.

As the simulations indicated an expected reduction of re-
ceived OGMs of almost 50 % with no adverse side effects, this
change has been implemented in the real network. Firmware
images for all router models have been adjusted to make nodes
using only one tunnel connection, then tested and deployed
to all nodes in Paderborn. After all nodes were running with
the new firmware, we performed measurements on our nodes
again to compare the real world result with the one gathered
from the simulation.

The delays for client and node announcement are unmodified.
This is not surprising, as our optimization only removes
duplicate packets.

The results for packet counts are illustrated in Figure 5.
Figure 5a shows the results for the sent packet count metric.
The number of sent packets is similar to the measured value
in the model validation. This was expected because only one
tunnel connection is used to send packets to the gateway in
both cases. Therefore, this metric is independent from the
overall number of established connections.

Figure 5b shows the result of the received packet count as
a bar plot. As expected, the amount of packets, that is, the
control overhead in the network has nearly halved. By taking
the average size of an OGM into account, we get a new load of

approximately 10 GB of data for each node and month caused
by the transmission of OGMs. Here, as well, the data shows
very good correspondence between the simulation result and
the data from the real world, that is, the model reflects the
behavior of the real network.

What is left to investigate is the impact of this change on
delay if a gateway fails. After all, by deploying the discussed
changes to the real network, we lost the redundancy and we
expect a much higher downtime of a node in case of a gateway
failure. The uptimes of gateway nodes in Paderborn fluctuate
between one and one hundred days, with most gateways running
no longer than 10 days. Therefore, it is not uncommon that
a gateway becomes unavailable. In our scenario, the failures
are mostly caused by gateways locking up; a reboot is then
required to make the gateway running again.

To investigate the delay in case of a gateway failure in the
real network by using two tunnel connections, we intentionally
made one gateway unavailable and measured the time until
this has been recognized by a given node (i.e., until the node
switched to the second tunnel connection). For unmodified
firmware, the time was between 120s and 150s. We repeated
this measurement after we changed the firmware to use only one
tunnel. After the changes were deployed, the delay was between
180s and 200s. So, in a worst case scenario, using only one
tunnel instead of two, we increase the node’s downtime by
about one minute. Still, to put this into perspective, if we are
using only one tunnel, even as much as one gateway failure
per day causes the node to be unavailable for less than 1%
of the day. This is in contrast to a drop of control message
overhead to almost half, so we deem this slight increase in
potential downtime acceptable.

VI. CONCLUSION

In this paper, we described our process for simulating a
city-scale community network based on BATMAN IV. This
simulation model was designed to reflect a real-world deploy-
ment of such a network, that of the Freifunk community in
Paderborn. The simulation model is implemented as a set of
modules, one of them being our implementation of BATMAN IV,
and configuration data for the OMNeT++ simulation engine.
The complete model is composed of 4 gateways, 775 mesh
nodes, and 1151 users joining mesh nodes following recorded
data.

We validated the compound model against real world
measurements using trace data and make it available as Open
Source to serve as a basis for future research on community
networks. We further demonstrated that our model allows
researchers to extrapolate the impact of changes made to the
network from simulation to the real world deployment. As a
case study, we present results for a simple adjustment of the
network to trade (in our view) negligibly longer outages for
an almost halved control message overhead.

[1]

[2]

[3]

[4]

[5]

[6]

[7]
[8]

[9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

REFERENCES

L. Maccari and R. Lo Cigno, “A week in the life of three large Wireless
Community Networks,” Elsevier Ad Hoc Networks, vol. 24, Part B,
pp. 175-190, 2015.

T. Heer, R. Hummen, N. Viol, H. Wirtz, S. G6tz, and K. Wehrle, “Col-
laborative municipal Wi-Fi networks - challenges and opportunities,”
in 8th IEEE International Conference on Pervasive Computing and
Communications Workshops (PERCOM 2010), Mar. 2010, pp. 588-593.
R. Baig, L. Dalmau, R. Roca, L. Navarro, F. Freitag, and A. Sathiaseelan,
“Making Community Networks Economically Sustainable: The Guifi.net
Experience,” in 2016 Workshop on Global Access to the Internet for
All (GAIA 2016), Florianépolis, Brazil: ACM, Aug. 2016, pp. 31-36.
S. Vural, D. Wei, and K. Moessner, “Survey of Experimental Evaluation
Studies for Wireless Mesh Network Deployments in Urban Areas
Towards Ubiquitous Internet,” IEEE Communications Surveys &
Tutorials, vol. 15, no. 1, pp. 223-239, 2013.

A. Neumann, C. Aichele, M. Lindner, and S. Wunderlich, “Better
Approach To Mobile Ad-hoc Networking (B.A.T.M.A.N.),” IETF,
Internet-Draft (work in progress) draft-wunderlich-openmesh-manet-
routing-00, Feb. 2008.

T. Clausen, C. Dearlove, P. Jacquet, and U. Herberg, “The Optimized
Link State Routing Protocol version 2,” IETF, Internet-Draft (work in
progress) draft-ietf-manet-olsrv2-19, Mar. 2013.

M. Hundebgll and J. Ledet-Pedersen, “Inter-Flow Network Coding for
Wireless Mesh Networks,” Master’s Thesis, Aalborg University, 2011.
H. I. Kobo, “Situation-aware routing for wireless mesh networks with
mobile nodes,” Master’s Thesis, University of the Western Cape, Mar.
2012.

A. G. Bowitz, “Simulation of a Secure Ad Hoc Network Routing
Protocol,” Master’s Thesis, Norwegian University of Science and
Technology, 2011.

D. Furlan, “Improving B.A.T.M.A.N. routing stability and performance,”
Master’s Thesis, University of Trento, 2011.

J. Klein, “Implementation of an ad-hoc routing module for an
experimental network,” Master’s Thesis, Universidat Politecnica de
Catalunya, Sep. 2005.

F. Oehlmann, “Simulation of the ‘Better Approach to Mobile Adhoc
Networking” Protocol,” Bachelor’s Thesis, Technische Universitit
Miinchen, Sep. 2011.

E. Chissungo, E. Blake, and H. Le, “Investigation into Batmand-0.3.2
Protocol Performance in an Indoor Mesh Potato Testbed,” in 26th IEEE
International Conference on Advanced Information Networking and
Applications (AINA 2012), Workshops, Fukuoka, Japan: IEEE, Mar.
2012, pp. 526-532.

L. Barolli, M. Ikeda, G. De Marco, A. Durresi, and F. Xhafa,
“Performance Analysis of OLSR and BATMAN Protocols Considering
Link Quality Parameter,” in 23rd IEEE International Conference on
Advanced Information Networking and Applications (AINA 2009),
Bradford, UK: IEEE, May 2009, pp. 307-314.

E. Kulla, M. Hiyama, M. Ikeda, and L. Barolli, “Performance Com-
parison of OLSR and BATMAN Routing Protocols by a MANET
Testbed in Stairs Environment,” Elsevier Computers & Mathematics
with Applications, vol. 63, no. 2, pp. 339-349, Jan. 2012.

M. Abolhasan, B. Hagelstein, and J. C.-P. Wang, “Real-world perfor-
mance of current proactive multi-hop mesh protocols,” in Asia-Pacific
Conference on Communications (APCC 2009), Shanghai, China: IEEE,
Oct. 2009, pp. 44-47.

A. Varga, “The OMNeT++ Discrete Event Simulation System,” in
European Simulation Multiconference (ESM 2001), Prague, Czech
Republic, Jun. 2001.

R. G. Sargent, “Verification and validation of simulation models,” in
39th Winter Simulation Conference (WSC 2007), Piscataway, NJ: IEEE,
Dec. 2007, pp. 124-137.

A. M. Law, Simulation, Modeling and Analysis, 4th ed. Singapore:
McGraw-Hill, 2007.

J. Broch, D. A. Maltz, D. B. Johnson, Y.-C. Hu, and J. Jetcheva, “A
Performance Comparison of Multi-Hop Wireless Ad Hoc Network
Routing Protocols,” in 4th ACM International Conference on Mobile
Computing and Networking (MobiCom 1998), Dallas, TX: ACM, Oct.
1998.

